
Eur. Phys. J. D 19, 129–132 (2002)
DOI: 10.1140/epjd/e20020065 THE EUROPEAN

PHYSICAL JOURNAL D
c©

EDP Sciences
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Abstract. We report that entangled pairs of quantum clocks (non-degenerate quantum bits) can be used
as a specialized detector for precisely measuring difference of proper-times that each constituent quantum
clock experiences. We describe why the proposed scheme would be more precise in the measurement of
proper-time difference than a scheme of two-separate-quantum-clocks. We consider possibilities that the
proposed scheme can be used in precision test of the relativity theory.

PACS. 03.67.-a Quantum information – 06.30.Ft Time and frequency – 04.80.Cc Experimental tests
of gravitational theories

It is quantum entanglement that led to the historical con-
troversy over Einstein-Podolsky-Rosen experiment [1] and
then led to the Bell’s inequality [2] that explicitly re-
vealed non-local nature of quantum mechanics. On the
other hand, entanglement is the key ingredient in quan-
tum information processing: for example, the speedup in
quantum computation [3] is obtained through the paral-
lel quantum operations on massively superposed states
which are entangled in general. Recently, several new
protocols using quantum entanglement that have ad-
vantages over its classical counterparts were proposed-
entanglement enhanced frequency measurement [4], quan-
tum lithography [5,6], quantum clock synchronization
based on shared prior entanglement [7–11], efficient quan-
tum clock-transport scheme [12], and quantum enhanced
positioning [13].

In this paper, we propose a new application of the
entangled pairs of quantum clocks (non-degenerate quan-
tum bits) the specialized detector that precisely measures
difference of proper-times that each quantum clock ex-
periences. The proposed scheme is expected to be more
precise in measuring the proper-time difference than a

a Present address: Imai Quantum Computation and Infor-
mation Project, ERATO, Japan Science and Technology, Daini
Hongo White Bldg. 201, 5-28-3, Hongo, Bunkyo, Tokyo 133-
0033, Japan.
e-mail: wyhwang@qci.jst.go.jp

b Also with Department of Electrical Engineering, University
of Seoul, Seoul 130-743, Korea.
e-mail: dahn@uoscc.uos.ac.kr

c Permanent address: Department of Electronics Engineer-
ing, Korea University, 5-1 Anam, Sungbook-ku, Seoul 136-701,
Korea.

scheme where two separate quantum clocks are employed.
In this scheme, quantum clocks need to be accelerated
for some time-intervals and the acceleration’s effects on
quantum clocks might be non-negligible. Thus appropri-
ate handling of the effects are necessary. We suggest a
solution and a utilization of this case. Then we consider
using the proposed scheme in the precision test of rela-
tivistic time-dilation effects.

Let us assume that we have entangled pair of quantum
clocks in the state

|Ψ−〉 = |0〉A|1〉B − |1〉A|0〉B, (1)

where A and B respectively corresponds to each quantum
clock whose proper-time difference will be compared. (The
normalization factor is omitted throughout this paper.)
We also assume that Hamiltonian Hα for two mutually
orthogonal states of a quantum clock, |0〉α and |1〉α (α =
A,B) is given by

Hα = Eασz , (2)

where σi (i = x, y, z) is the Pauli operators. The time
evolution of each quantum clock is in general given by the
unitary operation

Uα(t)|0〉α = eiEαt|0〉α, Uα(t)|1〉α = e−iEαt|1〉α, (3)

where ~ is set to be one. When two clocks follow different
space-time trajectories, the time for each clock is given by
it’s own proper-time. First let us consider the case EA =
EB = E. (We will later consider a general case where
Eα’s are time-dependent and thus are not the same.) After
proper-times tA and tB have elapsed for A and B quantum
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clocks, respectively, the initial state of the quantum clocks
in equation (1) becomes

UA(tA)UB(tB)|Ψ−〉
= UA(tA)(e−iEtB |0〉A|1〉B − eiEtB |1〉A|0〉B),

= e−iEtBeiEtA |0〉A|1〉B − eiEtBe−iEtA |1〉A|0〉B,
= eiE∆t|0〉A|1〉B − e−iE∆t|1〉A|0〉B, (4)

where ∆t = tA − tB. In the proposed scheme we initially
prepare quantum clock pairs in the state |ψ−〉 at a single
site. We let each quantum clock (labeled by A or B) de-
parts and follows its own space-time trajectory and gather
them again. Then we perform some (collective) measure-
ment on the quantum clocks and get information about
the proper-time difference ∆t. (We do not consider the
case where the terms differ by 2nπ, n is integer.) As we see,
the proper-time difference ∆t contributes to the relative
phase of the quantum clock pair. Thus we can determine
∆t by measuring the relative phase. In other words, the
difference ∆t of the proper-time that each quantum clock
experiences since they departed, is accumulatedly recorded
in the relative phase of the non-degenerate quantum clock
pair in equation (4), which can be read out by collectively
measuring the quantum clocks at a single site. In the quan-
tum clock synchronization [7], it is required that the state
remains in the initial one when each clock has arrived at
its own location. Namely a condition that tA = tB should
be satisfied. This condition can be fulfilled by slow trans-
portation of quantum clocks. In this case, the relativistic
effect is something to be suppressed by a careful manipula-
tion (slow transportation) of quantum clocks. In contrast,
the proposed scheme utilizes the (relative) phase rotation
of the state in equation (4) when we measure the relativis-
tic time-dilation effect.

In the following, we explain why the proposed scheme
would be more precise in measuring the proper-time dif-
ference than the scheme of two-separate-quantum-clocks.
In the latter, proper-times of two separate quantum clock
which have traveled through different space-time trajec-
tories are compared to estimate the difference between
them.

Roughly speaking, in the proposed scheme the (rel-
ative) phase corresponding to the proper-time difference
become stationary while measurement is done. Thus the
proper-time difference can be more accurately measured
in the proposed scheme.

Let us consider simple measurement models and then,
using these, discuss on the advantage of the entangled
scheme.

In separate quantum clocks scheme, quantum clocks
are initially prepared in the state |0̄〉 = |0〉+ |1〉. (In this
notation, |1̄〉 = |0〉 − |1〉.) In order to measure the phase,
we perform, for example, a measurement Ŝx composed of
two projection operators |0̄〉〈0̄| and |1̄〉〈1̄|. The measure-
ment Ŝx on αth quantum clock can be done by applying
the following interaction Hamiltonians HI

α between each
quantum clock and an ancillary quantum bit for a time
width δt [14–16]

HI
A = σx ⊗ I ⊗ F, HI

B = I ⊗ σx ⊗ F, (5)

where I is the identity operator and F is a certain operator
that acts on ancillary quantum bit. Here the time width δt
is inevitably finite because it describes real physical pro-
cesses. Let us consider A-quantum clock. (The same thing
can be said for B-quantum clock.) The total Hamiltonian
HT
A can be written as

HT
A = HA + g(t)HI

A

= Eσz ⊗ I ⊗ I + g(t)σx ⊗ I ⊗ F, (6)

where g(t) is a Gaussian-like function that is peaked at
the time when measurement is performed and whose half-
width is δt. During the measurement, the prepared quan-
tum clock rapidly rotates between |0̄〉 and |1̄〉 due to its
own Hamiltonian HA. Since [HA, HI

A] 6= 0 ([C,D] =
CD − DC) and δt 6= 0, the measurement result is in-
evitably affected by the evolution due to HA. (To sup-
press this effect, it is assumed that either HA = 0 or
δt → 0 in many cases [14–16].) Namely, during the mea-
surement interval δt, the phase to be measured is rotated
2πδt/T (T = π/E). Thus, if the measurement time-width
δt is non-negligible comparing with the period of rotation
T , the result of the measurement would be an average of
phases of all states in which the prepared quantum clock
stays during a full rotation. In this case, therefore, the
measurement would fail or at least be largely uncertain,
if δt > T . Now let us consider the proposed scheme. Here
the pair of quantum clocks are prepared in the state |Ψ−〉
in equation (1). In order to measure the relative phase in
equation (4) later, we perform, for example, a measure-
ment with the following interaction Hamiltonian

HI = σ2
T ⊗ F, (7)

where σT = σ ⊗ I + I ⊗ σ and σ = (σx, σy, σz). This
corresponds to total-spin measurement [17] in the case
where the quantum clocks are spin-1/2 states. Similarly to
above separate-case, the total Hamiltonian HT is given by

HT = HA + HB + g(t)HI . (8)

However, since [HI ,HA + HB] = 0 here, we can safely
measure the quantity corresponding to σ2

T [14,15]. Then
let us decompose the state in equation (4) as

eiE∆t|0〉A|1〉B − e−iE∆t|1〉A|0〉B =

cos(E∆t)|Ψ−〉+ i sin(E∆t)|Ψ+〉, (9)

where |Ψ−〉 and |Ψ+〉 are eigenstates of σ2
T with eigenval-

ues 0 and 1, respectively. (|Ψ+〉 = |0〉A|1〉B + |1〉A|0〉B.)
However, the relative phase E∆t does not evolve at the
measurement stage and thus finiteness of δt does not mat-
ter. Therefore, by measuring σ2

T with HI in equation (7),
for example, we can obtain coefficients in equation (9) and
then calculate ∆t.

Now let us continue to discuss on advantage of the
proposed scheme. It is clear that accuracy of the two-
separate-clocks scheme is limited by the uncertainty of
each separate clock. That is, the proper-time difference
cannot be measured more accurately than the uncertainty
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of each clock’s time. (Here we assume the period T = π/E
of quantum clock’s phase rotation is a constant, which
is equivalent to assuming complete shielding of quantum
clocks from environments. Incompleteness of the shield-
ing might be the limiting factor for quantum clocks in
some cases. In this case, phase-uncertainty improvement
by the proposed scheme would not be of much importance.
Thus what we consider is the case where such complete-
shielding problem is overcome by certain methods. Similar
thing can be said to the efficient quantum clock transport
scheme [12] which improves phase-uncertainty. However,
even in this case, the phase uncertainty would limit the
accuracy of quantum clocks.)

The accuracy of a quantum clock is roughly propor-
tional to the product of the period T of phase rotation
and the uncertainty in the phase measurement δφ. The
uncertainty of the phase may be due to the inherent sta-
tistical behavior of quantum states (i.e., the results of the
phase-measurement form a statistical distribution given
by quantum mechanical formula) and inherent finite time
width such as δt of the function g(t) in equations (6, 8) in-
volved with phase-measurement. If we employ many quan-
tum clocks, we can reduce the phase uncertainty; roughly
22n number of quantum clocks allow us to estimate n bits
of the phase [12]. When the number of quantum clocks is
given, one may further improve the accuracy by decreas-
ing T i.e. by increasing the speed of phase rotation. (We
can consider improvement of accuracy by other method,
namely by optimizing the initial states [18].) However, this
method has its own limitation as the following. The faster
a phase rotates the larger the phase uncertainty would be-
come, since the phase makes wider angle of rotation during
the measurement: in real experiment our measurement-
results for the phase would inevitably correspond to the
phases during the inherent finite time width such as δt of
the function g(t) in equations (6, 8), not that of an in-
stance. Thus the measurement-results for phases make a
broader statistical distribution than in the case where δt
is zero, thus increasing the phase uncertainty for a given
number of quantum clocks. In particular, the δt’s broaden-
ing effect would be considerable when T become compara-
ble with δt. Moreover when T become smaller than δt, due
to cyclic property of phase, the phase uncertainty would
be rapidly maximized so that it would become impractical
to determine the phase. (Therefore an optimal accuracy of
quantum clocks would be obtained by employing quantum
bit systems with a certain T of intermediate value.)

In contrast, in the proposed scheme the relative phase
in equation (4) to be measured does not rotate while mea-
surements for the relative phase, for example, the σ2

T mea-
surement, are being performed. Thus the inherent finite
time width δt involved with phase-measurement does not
matter in the proposed scheme. On the other hand, we
can see that accuracy of the proposed scheme is given by
a product of each separate quantum clock’s period T of
phase rotation and uncertainty in the relative phase δφ.
(Here note that T is not the period of the relative phase’s
rotation but fast rotation of each quantum clock’s phase.)

Thus we can improve the accuracy, by decreasing T as we
like without increasing δφ in the proposed scheme.

Now let us consider quantum clocks whose phase ro-
tation can be turned on or off, as we like by some opera-
tion. For example, spin precession of particles by applied
magnetic field can used as quantum clocks. Here we can
make the clocks turned on (off) by applying nonzero (zero)
magnetic field. In this case, accuracy of the two-separate-
clocks scheme also would not be limited by the δt, since
we may turn off both clocks when we are measuring them.
However, in this case the magnetic field instead must be
precisely controlled to the level of required accuracy of the
scheme, which would be a much more difficult task than
attaining the required accuracy with two naturally given
energy eigenstates as in ordinary quantum clocks scheme.

The assumption that environmental effects can be ef-
ficiently removed is crucial for the success of the pro-
posed scheme. One may ask that if such efficient shielding
is possible or accurate quantum clocks can be obtained
then why we need the entangled quantum clocks scheme.
However, as noted above, efficient shielding would not
directly guarantee accurate quantum clocks, due to un-
certainty in phase measurement. Overcoming the phase
uncertainty would become particularly important in pre-
cise measurement of the difference of proper-times. The
proposed scheme is advantageous in that it is not lim-
ited by the inherent time width δt involved with phase-
measurement, in overcoming the phase uncertainty.

Let us now consider the general case where Eα’s are
time-dependent and thus are not the same. Eα may be
time-dependent due to either interaction with environ-
ments or acceleration that each quantum clock suffers
during the round trip in space-time. As previously, here
we assume that the environmental effects can be removed
by shielding the quantum clocks from environment. It is
not well known yet how quantum clocks are perturbed
by acceleration except for the fact that the effect would
be very small [21]. The condition that EA = EB = E
we assumed previously also implies that acceleration ef-
fects can be removed by some methods, e.g., careful choice
of the system to be used as quantum clocks or sim-
ply making the acceleration very small. Now we consider
the case where the acceleration effects on the quantum
clock’s time evolution is non-negligible. The phase dif-
ference ∆φ =

∫ tA
0 EA(t′A)dt′A −

∫ tB
0 EB(t′B)dt′B that we

would measure in the proposed scheme is the combined re-
sults of the relativistic and the acceleration effects, which
cannot be discriminated from each other in the measure-
ment result. Nevertheless, we can still utilize the proposed
scheme for measuring the proper-time difference by mak-
ing each quantum clock to experience the same accelera-
tion effect while following different path in space-time. For
example, we can consider the following case almost simi-
lar to the twin-paradox experiment [19]. One (the other)
party makes a short (long) trip. However their acceler-
ating sections in the space-time trajectory are the same
with each other. In this case the acceleration effect cancels
with each other and thus we can estimate pure relativistic
time-dilation effect from the measurement result. Let us
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consider another example, gravitational time-dilation [20,
21] where we can also make the acceleration effects to
cancel with each other. First prepare the two parties of
entangled quantum clocks at one site in constant gravi-
tational field. Then lift both of them to a higher place
and then bring down one party to the original place. Af-
ter waiting for a long time, bring down the other party
with the same magnitude of acceleration and velocity as
the first one. Then by measuring the phase difference we
can estimate the gravitational time dilation. On the other
hand, we can make use of the proposed scheme for measur-
ing the acceleration effect. Let one party to be at rest and
another party to make a trip with some acceleration, as
we do in the original twin-paradox experiment [19]. Mea-
sure the phase difference ∆φ and calculate each party’s
proper-time using formula of special relativity. The differ-
ence between them is the acceleration effect.

The precision of the entangled quantum clocks scheme
is estimated to be order of period T , assuming δφ ∼ 1. The
period T of hyperfine transition is of order of 10−10 s.
However, in the proposed scheme a system with more
rapidly rotating phase can be employed since the phase
become stationary while it is being measured, as noted
before. By choosing some quantum clocks whose energy
difference Eα is of an order of one electron volt, one can
obtain T ∼ 10−14 s. However, the greater energy differ-
ence Eα becomes, the more probable the higher energy
state makes a spontaneous transition to the lower one in
general. This problem may be avoided by adopting some
metastable states as quantum clocks, although this prob-
lem would limit the accuracy of the proposed scheme.

It is interesting to note that at least in principle the
proposed scheme may also be used to detect time-dilation
effect that gravitational wave cause, in a setting similar to
a non-mechanical gravitational wave detector proposed by
Braginsky and Menskii [22,21]; fix two component quan-
tum clocks on edges of a disk, making an angle π/2 with
the origin of the disk. The disk is free-falling and is con-
stantly rotating in phase with a frequency component of
gravitational wave and the axis of rotation is pointing to
the source of the wave. Then one clock’s time is constantly
dilated when compared with the other one’s, due to grav-
itational field of the wave. However, it still seems to be
a formidable task at present to detect gravitational wave
using the proposed scheme.

In conclusion, we reported that the entangled pair
of non-degenerate quantum clocks can be used as a
specialized detector for precisely measuring the difference
of proper-times that each constituent quantum clock
experiences. We described why the proposed scheme
would be more precise in the proper-time difference mea-
surement than a scheme in which readings of two separate
quantum clocks are compared. Acceleration’s effects on
quantum clock’s time evolution may be non-negligible.
In this case, we considered some experiments where the
acceleration effect cancels with each other. The proposed
scheme can be used in precision test of relativistic time

dilation effects-the twin paradox effect [19], gravitation
time-dilation [20,21], and possibly time-dilation due to
the gravitational wave.
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